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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS
TECHNICAT NOTE NO. 1401

INTRODUCTION TO THE PROBLEM OF ROCKET-PCWERED
ATRCRAFT PERFORMANCE

By H. Resse Ivey, Edward N. Bowen, Jr., and
Legter ¥F. Obormy

SUMMARY

An Introduction to the problem of determining the fundamental
limitations on the psrformance possibilities of rocket-powered aircraft
1s presented. Previous material on the subJject 1s reviewed and given
in condensed form aslonf with supplementary analyses.

Some of the problems discussed are:

(1) Limiting velocity of a rocket projectile
(2) Limiting velocity of a rocket jJet

(3) Jet efficilency

(4) Nozzle characteristics

(5) Maximum atteinable altitudes

(6) Range

Formules are presented relating the performance of a rocket-
powered aircraft to basic welght and nozzle dimensional parameters.
The use of these formulas 1s 1llustrated by thelr application to the
speclal case of a nonlifting rocket projectile.

INTRODUCTION

Rocket englnes carry both the fuel and the oxidlzing agent needed
to create thrust and therefors are not limited to the atmosphers for
thelr operation. Since a rocket englne develops high thrust at extreme
altitudes, rocket-powered alrcraft can be expected to attain very high
speeds In the low density upper atmosphers. Because of the unusual
characterigtics of the engine and ailrcraft operating conditions, an
extenslve analysls 1s needed to determine the optimum alrcraft configu-
ration and flight plan for attaining maximum possible performence.,
Before guch an analysls can be conducted in detall, the fundamental
limitations of rocket performance - such as variation of thrust with
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altitude, variation of propulsive efficiency with speed, and the pos-~
gible range of altltude and veloclty that may be encountered - must be
determined.

The purpose of thils paper 1s to present the relations among the
following variables: (1) performance {range, altitude, speed, and so
forth), (2) fuel characteristics, (3) fuel 1oads (%) aircralt welght,
and (5) nozzle dimensions. The application of the fundamental formulag
to determine the optimum conflguration and performance of actual air-
craft 1s not included. However, the optimum performance of a asimple
eerodynamic shape such as a projectile is used to illustrate the methods
developed.

A large amount of work has already been done in developing the
theory of rocket projectiles; however, the reports are not avallable
ag refersnces for the present paper because of thelr classification.
This work 1s reviewed in condensed form, and additions are made along
the line of performance limitatlon and operating efficiency.

The development of the fundsmental equations involves much mathe-
matical manlpulation which 1is not required for the presentation of the
final results of the analysis. The present paper is therefore divided
into two parts: The first part glves a nonmathematlical dlscussion,
which 1s complete in 1tself, for the reader not concerned with the
derivation of the formulas involved; the second part presents the
mathematlcal derivatlions and assumptions used in this analysis.

SYMBOIS
The followlng symbols are used in the section entitled "Technical

Discussion and Derivation of Equations.”

A projected frontal area

o

speed of sound or acceleration
constant defined as r.V, cos 6

drag coefficlent based on frontal area
drag

total energy

= H o é) Q

force



NACA TN No. 1k01

0

universal constant of gravitation
acceleration due to earth's force of gravity
heating value of fuel

mechanical equivalent of heat

altitude

H P9 H O m

constant defined as T
Mo

|

mess
masg of the earth

pressure

2
roVo

O W =

paremeter defined as

R range

K

distance from center of earth
surfacé ares i

thrust

time

velocity

H 4 o B nm

welght

=

ratlio of gpecific heats
efficlency
alr density

in polar coordinates, angle measured from posltive X-axis

O « D I

launching angle
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Subscripts:

a atmospheric

B during or at end of burning

c combustlon chamber; during coesting
e empty; exit

final; fuel

e H

Jet

(o]

initlal; at surface of earth
remalning fuel

projected in thrust direction

¢ H W

threat

av average

eff effectlve
inst instantaneous
max maxlimum

mix mixture

opt optimum

SL sea level
ult ultimate

vac vacuum

GENERAL DISCUSSION AND PRESENTATION OF RESULTS

Principle of Operation

A rocket carrles all the fuel and oxldizing agent required to
operate the englne and hence the engine may operate both in alr and in



NACA TN No. 1401 5

a vacuum. The rocket englne exerts a forward thrust as a reaction to
expelling the exhaust products rearward at high velocity as a Jet. This
thrust can be expressed in terms of effective exhaust Jet velocity and
fusl consumption by equating thrust to rate of change of the momentum of
the exhaust gases being expended. Filgure 1 shows the variation of fuel
consumption required per unit of thrust with effective Jet velocity. It
is apparent that high jet velocitles are required for low specific fuel
congumption.

Rocket Velocity Limltation

The final velocity of a rocket-powered aircraft is dependent
upon air resistance, effective Jet velocity, and percentage of fuel
load. Even in the absence of air resistance a limit is set by the fuel
load and the effective Jet velocity on the final speed that may be
obtained. The maximum veloclty attained Py a rocket-powered alrcraft
in an etpty gravity-free space may be determined by equating the thruat
to the product of instantaneous rocket mass and Instentaneous rocket
acceleration. Figure 2 presents.thisg limiting veloclty as a function
of both fuel load and Jet veloclty. and shows that the speed limitation
18 directly proportiomal to Jet weloclity and 1s critically dependent on
fuel load. For instance, at a 90-percent fuel load the value of limiting
velocity is 3.5 times as large as the value at a L5S-percent fuel lcad.

Jet Velocity Limitation

The maximum possible Jet velocity for a specific fuel would be
obtained when all the heat released during combustion of the fuel was .
converted to exhaust Jet kinetlc energy. In this case the Jet velooity
would vary ae the square root of the heating value of the fuel. Actual
Jet veloclties are further limited by effects of radiation, heat capacilty
lag, dissociation, nozzle characteristics, and combustion efficiency.
Jet velocity alone 1s insufficlent basls for melection of the best fuel;
handling qualitles, fuel density, and avellability must also be con-
sldered.

Jdet Efficlency

Since for constant burning rate the thrust of a rocket engline is
dependent only upoh the velocity of the Jjet relative to the engimne, a
rocket develops constant thrust at all rocket velocltles in a wacuum.
Rocket speeds in excess of Jet speeds are therefore possible. (See
fig. 2.) The manner in which the Jet efficiency varles as the speed
of the rocket increases may be easlly determined.

The rate of expendling fuel can be considered constant. When the
rocket 1s at rest, all the fuel energy released durlng burning appears
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as kinetic energy of the Jet, and hence none of the energy 1s used to
increase the energy of the rocket, and the Jet efficlency is zero at
zero forward speed. When the rocket is moving at Jet speed, the exhaust
gases remain gtaticnary and have no energy relative to the earth. Then
all the usable fuel energy ls being used to increase the kinetlc emnergy
of the rocket, and the Jet efficlency is 100 percent. When the rocket
1g moving at twlce Jet speed, the exhaust gases are ejJected at Jet speed
relative to the ground, and hence all the fuel energy released during
burning again goes into the Jet. The Jet effliclency therefore returns
to zero at twice Jet veloclty. (See £ig. 3.) The fact that the
efficlency 1s zero at twlce Jet mpeed does not mean that the rocket
cannot continue to accelerate, but simply means that any additional
increase in speed above twice Jet speed will result in a decrease in
kinetic energy due to the steady decremsmse in rocket mass caused by

fuel consumption.

: A similar method of analysis can be used to determine the average
Jet efficlency over the period of a complete flight. Figure 4 shows
that this average Jet efficlency cannot exceed 65 percent.

Nozzle Parameters

The thrust of a rocket englne 1s equal to the lntegral of the
surface pressure tlmes the projected areea in the thrust direction for
the inner and outer surfaces of the rocket as 1llustrated by figures 5
to 7. Nozzle effectiveness can be defined as the ratio of the thrust
actually produced to the thrust that would be avallable by perfect
converglon of the fuel energy to thrust. Nozzle dimensions can be
related to nozzle effectiveness by use of the laws of conservation of
energy and conservation of momentum. This relationship ls presented
graphically in figure 8 whilch may be useful in estimating the correct
nozzle dimensions for optimum nozzle operation with various ratios of
atmospheric pressure to combustion chamber pressure. Figure 8 indicates
that low ratios of atmospheric pressure to combustion chamber pressure
in combination with high ratlios of nozzle exlt area to throet area are
needed for reassonable wvalues of nozzle effectiveness. In actual practice
a compromlse between nozzle structural considerations and nozzle effec-
tiveness 1s necessary. It 1s obvious that for a glven constant combustion
chamber pressure, the effectiveness of a nozzle of glven dimensions will
increase with an increase in altitude. '

.

Meximum Altitude

The maximum gltitude that can be attalned by a rocket launched
vertically from the ground is determined by the precentage of fuel load,
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the Initlal acceleration, the Jet veloclity, and the air drag. The basic
case of a rocket operating in a vecuum is considered first and then the
effect of air resistance on the altltude attained 1s dlscussed.

Figure 9 shows the veloclity reached at the end of burning for rocket
projectliles fired vertically in a vacuum for an effective Jjet velocity of
8000 feet per second, and figure 10 shows the altitude reached at the end
of burning for the same projectiles. At the end of burning, the rockets™
continue to increase in altltude until the total kinetic energy of the
rocket at the end of burning 1ls converted to potential energy in the fom
of Increased altitude. Figure 11 ghows the maximum altitudes for the
rockets investigated. It 1s evident that large fuel loeds and high
initial accelsrations are required for rea.ching very high burnt veloci-
ties or very high meximom altitudes.

If a drag factor (fig. 12) 1e assumed for the body shown in figure 13,
the resulting varistion of maximum altitude atbtalined with initial accel-
eration and fuel load can be represented by figure 13 for a Jet velocity
of 8000 feet per second. It should be noted that an increase in the size
of a rocket decreases the drag per unit volums and, therefore, very large
rockets wlll exceed the performance glven in figure 13. This figure
indicates that there exlste an optimum initial acceleration for reaching
maximm altitude that 1s almost the same for all moderate fuel loads at
a value of the ratlo of thrust to weight equal to 3 (that is, initlal
acceleration equals twice that of gravity).

Figure 13 shows that for rockets which have ratios of thrust to
initial welght of 100 there is an optimum fuel load of approximately
60 percent. Rockets which have fuel loads over 60 percent have such
light empty welghts that they decelerate rapidly after burning and do
not go so high as those wlth heavier empty welights.

; —

The dyrag varlatlon used in commectlon with figures 12 and 13 1s
greatly simplified and would have to be a function of Reynolds number
for a more exact study. The Introduction of drag as a function of
Reynolds number would, in general, shift .the curves of figure 13 and
change the crossings of the curves. - =

The equatlion for maximum altitude can be set equal to 1nfini‘t.y and
solved for the fuel loads necessary to leave the gravitationsl field of
the earth. A rocket moving 25,000 miles per hour and shot at any angle
above the horizontal has enough energy to escape from the earth.

Figure 1L shows a graph of the fuel loads required to reach this speed.
in a vacuum.

The large fuel loads required for escape velocitles may be imprac-
tical from structural considerations. It may be necessary, therefore,
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to boost the final rocket by means of expendable booster stages. If
the ratio of the welght of the fuel used in the booster stage to the
initial welght of the combination rocket 1s equal to the ratic of the
fuel in the final rocket to the initlal weight of the final rocket,
then the burnt veloclty of the final rocket is twice that which would
be possible with the final rocket alone. Three-stage rockets operate
on a similar principls. Figure 14 points out the large savings in
required fuel load that are possible with two-stage and three-stage
rockets.

When the required fuel loads are high, the ratio of welghts of
one stage of the rocket to the next 1s large. '

Maximum Range

The flight path of a rocket fired 1n a vacuum with one component of
veloclty parallel to the surface of the earth is an ellipse with one
focus at the center of the earth, provlided the speed of the rocket 1s
less than escape speed. If 1t 1s assumed that the rocket is launched
wilth a glven veloclty at the surface of the earth end recelves no
additional thrust and that the laws of conservation of energy and con-
servation of angulaer momentum apply, there 1s obtained figure 15 which
showe the varlatlon of range with launching velocity and launching
angle.. This figure indicates that short-range rockets should be
launched at an angle of approximately 45° but long-range rockets should
be launched almost parallel to the ground. In practice the angle must-
be corrected to allow for the effects of the atmosphere.

Figure 16 shows the maximum range attalnable as a function of the
launching velocity for rockets launched at the optimum angle. The range
i1s shown to increase very rapldly with lncreasing speed.

The maximum eltitude reached by the rocket when fired at the angle
for maximum range is shown in figure 17. The rockets flred at approxi-
mately 16,000 miles per hour reach higher altitudes than any others.
The range that corresponds to this launching veloclty 1ls 6000 miles.
(See fig. 16.) Rockets with eilther shorter or longer ranges do not
reach as high an altitude.

, The fuel loads required for attaining various renges are given for
one-stage, two-stage, and three-stage rockets in figure 18. This Pfigure
indicates that multlstage rockets are necessary for attaining long
ranges wlth moderate fuel loads.
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TECHNICAT, DISCUSSION AND DERIVATION OF EQUATIONS

Principle of Operation

A rocket carrles all the fusel and oxidizing agent required to
operate the engine, hence the englne may operate both in air and in a
vacuunm.

The rocket englne exerts a forward thrust as a reaction to expel-
ling the exhaust products rearward at high veloclty as a Jet. This
thrust can be expressed 1n terms of exhaust Jet velocliy and fuel con-
sumption by equating the thrust T +to the rate of change of momentum of
the exhaust gases being sxpended _ i

_ . N
T = if'ag (1)

where g 1is the acceleration due to gravity, V‘j is the effective

velocity of the exhaust Jet relative to the rocket, and dW/ﬁt is the
rate of fuel consumption (numerically equal to rate of change of rocket
welght) .

Example 1. Find the fuel consumptlion required to produce 1000 pounde
of thrust with a Jet velocity of 6000 feet per second.

From equation (1)
aw Tg 1000 X 32.2
at = \ S 00
= 5.37 pounds per second .-

This example emphasizes the very high fuel consumption required by
rocket englnes. Figure 1 shows the variation of speclfic fuel con-
sumption wlth effective Jet velocity.

Rocket Velocity Limitation

The veloclty of a rocket depends upon many factors, such as Jet
veloclty, fuel consumption, end air resistancej; however, certaln impor-
tant relations can be obtained when some of the factors are neglected.
If the effects of external forces such as gravity and air resistance
are neglected, the thrust equals the insgtantaneous mass of the rocket

times the acceleration
w -t
T=o_—j§l .
g at , (2)
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where t 1s the tlme the rocket has been burning. Substliuting the
value of T from equation (1) in equation (2) gives

aw
Vy aw Yo -t 3% av
—— ] C—————— G——

g dt g dt .

Separating the varlebles ¥ can be assumed constant) and integrating
glves dt
Yo

Wo-tag

The final speed of the rocket <when Wo -1t W™ = We) 1s then
at

wO
Ve =, logew—;+vo (3)

where W, 1s the empty weight.

This equation can elso be put in the form:

1
Ve = V;J loge -——Wf- + VO (W)
1 -

(o]

where Wf/Wo‘ 1g the fractional part of the initial welght which conasisted
of fuel. The final veloclty of rockets starting from rest is presented in

figure 2 as a function of percentage of fuel load and Jet velocity by
means of equation (4).

Example 2. Estimate the limlting final speed of a rocket having
60 percent of its welght in fuel and having a Jet veloclty of 6000 feet
per second. Figure 2 gives the answer as

Ve 3750 miles per hour

5500 feet per second

Jdet Veloclity Limitation

The foregolng parts of the present paper have demonstrated that the
attalnment of high Jet wvelocitles 1s ome of the important requlirements
of rockets. In addition to the various intermal efficlencies which act
to decrease the actual Jet velocity, there 1s a baslc limitatlion set by
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the heating value of the fuel. TIn the limlt all the fuel heat of come~
bustion 1s changed into kinetic energy in the Jet. Then the Jet velocity
is related to the average heating wvalue of a pound of fuel mixture Hmix’

if the initial heat content of the mixture 1s not important, by the
relation

Vs =y2ediy , = 223.9 /8 5 -5

Example 3. What 1s the maximum Jet velocity obtalnable from
complete combustion of & fusl mixture consisting of 78 percent oxygen
and 22 percent hydrocarbon? The heating value of the hydrocarbon is
20,750 Btu per pound.

The limiting Jet velocity 1s

Vy ., =223.9 l/0.22 X 20,750

= 15,130 feet per second

ult

In actual practice, radiation, heat capaclty lag, dissoclation, low
operating pressures, lncomplete combustion, losses dus to viscoslty,
and other factors combine to cut the effective Jet veloclty approxi-
mately in healf.

Jet Efficlency

The sectlong entitled "Principle of Operation" and "Jet Velocity
Timitation" have shown that the thrust developed by a rocket depends
upon the Jet veloclty and fuel rate of burning. For a constant fuel
consumption and effective Jet velocity, ths thrust is essentilally
conatant for all rocket veloclitles. When the speed of the rocket 1s
zaro, the useful work per second done by the Jet 1s obviously zero.

Ag the speed of the rocket is increased, the useful work per secomd
done by the Jet increases. The efficlency of the Jet 1n converting

Jot energy to kinetic energy of the rocket can be expressed by the fol-
lowing ratio:

= Rate of change of rocket kinetlic energy
M3 T Rate of kKimetic energy (relative toc rocket) expslled in Jet

If the kinetic energy of the rocket is T/ .

L mv®
2
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and the time rate of increase of the rocket energy 1s

mnv EE - l'V2 4m
dat 2 it

and the kinetlc energy per second of the Jet relative to the rocket
1s

1,2dm
VJ at

then, My becomes

&V 1., dm
; WE-FV & (
J ldmy o

2dt 'J

Then, since

m = _td—g
Mo It

and, by use of equationa (1) and (2)

dm
& V&
at T Ty am

To = " 3%

equation (6) upon simplification becomes

2vyv - V2 '
it v32 B <VJ> < ) a

Figure 3 shows a plot of thls equation. The Jet efficiency reaches
a maximum (100 percent) at a rocket speed equal to the Jet speed. Any
increase 1n rocket speed above twice the Jet speed results in a net
decrease In total rocket kinetic energy. This phenomenon can be
explalned by the fact that the mass of the rocket decreases (because of
fuel consumption) at such a rate that the increase in rocket velocity is
insufficlent to maintaln even constant kinetic energy. The fact that
the rocket attalins maximum kinetic energy at rocket velocltles equal to
twice Jet veloclity leads to the following expression derived from
equation (3) for the maximum attainable kinetic energy of a rocket
starting from rest and wilth & fuel locad sufficient to accelerate to
twice jet velocity: 0 '

KE. | =200y

max 92
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Of additional interest 1s the average Jet efflclerncy slnce the
rocket was launched,defined as the final klnetlc energy of the rocket
divided by the kinetic energy expended in the Jet.

The kinetic energy of the empty rocket is

T

-— 2 . - .
-ﬁ'- _..——v
K.-—l 2

and the kinetic energy of ths .fuel burnsd was

m -m
. = O o v 2
K.E-f 2 v‘j

Therefore the average Jet efflciency 1ls

_KE. __ T v 1 /vV?
Wav ~ KEr " mg - mg Ve M } 1\YJ
mg
From equation (3)
v/vJ

Then . .
: 2
Ny, = 1 J_ (8)
i = AT
e -

Figure 4 shows a plot of equation (8) indlcating an approximate maximum
Jet efficlency of 65 percent for rockets reaching speeds of sbout 1.6 times
Jet speed. This figure shows that the average propulsive efficiency of a
rocket 1s not very high, mainly because of the low initial efficiency.
Higher average Jet efflclenclies may posslbly be secured by boosting the
rocket over the low-gpeed range by some more efficlient means of propulsion.

Nozzle Paramsters

In the preceding dlscussion the rocket characteristics have been
frequently expressed in terms of an "effective" Jet velocity (defined by
equation (1)) in order that the equations would be simplified. The present
section will consider in more detall the fundamental nozzle characterilstics
that Influsnce the effective Jet veloclty.
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The thrust- T acting on the rocket 1s equal to the integral of
the pressure P +times the proJjected area in the thrust direction ST
for the inner and outer surfaces of the rocket:

' %guterP Wr + Jg;nerp e )

Figure 5 shows thes elemental forces on the outer surface of the rocket
at reast Iin the atmosphere. All the forces balance out except those on
the nose with a projected area equal to the exit area of the nozzle.
The nose of the rocket has atmospherlic pressure on 1t so that the force
due to thils pressure is

P dS, = -P_A ' 10
Jg;ter T ave (20)

Figure 6 shows the elemental forces on the inner surface of the rocket.
The 1ntegral of these forces 1in the thrust dlrection can be most easily
found by considering the force that the inmer surface of the rockst
exerts on the burning fuel. (See fig. 7.) Equating the resgultant force
on the gas In the combustlion chamber and nozzle to the rate of increase
of momentum of the gas glves the expression

dm
LF =. P dSp - PgAy = Vg 3% (11)
Trner - o8 e dt

and hence

[ Pasy =V, 24 PA, (12)
nney

The following equation 1s obtained by use of equations (10), (12), and
(9):

T = (Pe - 1>8> By + Vo 2 (13)

The exit pressure for maximum thrust can be found by differenti-
ating equation (13); however, for the saeke of having a physical picture
of the problem,the optimum exlt pressure will be found from other con-
slderations. When a small extension (area = dSp) is added to the nozzle,
the pressures upstream in the nozzle and rocket interlor are unchanged
since the flow 1s supersonic. Also, the pressure on the outer surface
of the rocket is still atmospheric so that the only changes in the forces
on the rocket are those contributed by the pressures on the added nozzle
element. Therefore,

dT=dST<Pe-P&9
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The addition of arsa to the nozzle obviously lincreases the thrust
as long as Pg > Py and thrust reaches a maximum when Pg = Pg. A
rocket at rest, therefore, develops 1ts highest effective Jet velocity
when the flow is expanded to atmospheric pressure.

The rocket in moticn presents s different problem. It is no longer
desirable to obtain maximum thrust but rather the best compromise of
thrust and drag. If the nozzle is not & factor determlining the shape
of the rocket, the nozzle should expand the exhaust products to the
pressure existing locally on the surface of the rocket around the nozzle
exit.

The various terms in equation (13) can be related by the use of a
simple one-dimensional nozzle theory derlved from Bernoulli's equation

{2 2 al2 P2 -1

and the relationship

a2 = ‘)_éll -{(15)

If stagnation conditions are assumed to exlst in the combustlon chamber
(Vc =Vy = O), equation (14) becomes

Ve 2 p 7-1 '
T ) "
or
L _
o [ y.-1 vB\7-1
.,3:=<1- 5 E) (17)
Also
Z_ _
P y =1 V2 7-1
(- o
and

Lz = <:|_ _2 -1 ﬁ) (19)
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In the throat of the supersonic nozzle the flow moves with the
local speed of sound. From equation (19)

2
V't=a"b=a'c 7+l (20)
Then equations (17) and (20) give density in the throat
1
2 \ 7-1 ,
p-t = pc 7Y + 1 (21)
and equations (18) and (20) give pressure in the throat
2
2 \ 71
Py =P (741 (22)
The massflow (or fuel consumption) is
741
dm 2 \e0-3)
3T = PVt = Pohtac\y r 1 = PoheVe (23)
Equation (13) can be written in nondimensional form as
P -P v
T _ e a _e
a E B a, d_m Ae * 8¢ (Eh)
C at C at
By substituting equations (15), (18), and (23) in equation (24)
-1
T = fi - E&_ Ae + 2 1 - .—?— 7 (25)
o, \Fo F 7+L 7y - 1 =28
€4t 2(7-1)

s

As previously mentioned, the thrust is a maximum when the first term
equals zero. The highest wvalue the last term can have is found when

P
== = == = 0; that is,

P, T 5,
T 2 '
<a d_m> ol (26)
ult

C dat
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The ultimate Jet velocity therefore is

2 :
= 8¢ vy -1 (27)

gy

ult

The effectiveness of a nozzle in producing thrust can be found by
dividing equation (25) by equation (26).

The followlng relation between nozzle area ratio and pressure ratlo
1s obtained by equating masgs flow at the nozzle throat to mass flow at
the nozzle exit:

‘F 2 7+l-1 741 : :
P |y ey
<Ae) |_<Ec> \F~ ) -‘ ] & | L (r-l() )

By substituting arbitrary values of Pg/Pe 1n this eq_ua.tion, simultaneous

values of P.,/P, and At/Ae can be obtalned for substitution in o
equation (25) with arbitrary values of Pa/Pc. The results have been

plotted in figure 8 which gives the effectiveness of the nozzle in
producing thrust. For example: Determine the optimum area ratio to

be used on a liquld-fuel rocket operating at sea lewel (Py = 14.T)

with a combustion chamber pressure of 147 pounds per square inch. The
ultimate Jet velocity 1s 15,130 feet per second; therefore, the pressure
ratio is

P

Ta _ 1h.T _
Pc -]-_ET-—O.:L .

Figure 8 glves the peak of the curve for thie pressure ratio at an area
retio ;

A

o

The ratio of effective Jet veloclty to ultimate Jet velocity is given

ag .
v | : - z
—d— = 0.607

Suit
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The effective Jet veloclty as limlted by pressure ratioc and nozzle
dimensions 1s then

Vs = 15,130 X 0.607

9185 feet per second

The variation of thrust with altitude can be determined from
figure 8. TFor instance, 1f the rocket of the preceding example is
P
congldered to be in a vacuum §E =0 and to have the same nozzle
c

(=]
-2 =02.,12
Ay

v
=4 = 0.709
dug

VJ = 10,730 feet per second

From equation (1) 1t is seen that the thrust 1s proportional to
the effectlive Jet velocity since the mass flow remelns constant. The
ratlo of thrust in a vacuum to thrust at sea level for thils particular
cage 1s then

T
vac 10730

= = 1.1
TsL 9135 T

High-pressure rockets will have a lower variation of thrust with
altitude (atmospheric pressure) than low pressure rockets.

Figure 8 emphasizes the fact that rocket exhaust nozzles attain a
high effectlveness only when low ratios of outside pressure ito combustion
chamber pressure are maintained.

Maximum Altitude

An extension of the fundamental relations developed in the fore-
going sectlons allows the determination of the maximum attainable
altitude of rockets launched vertically from the ground. The basic case
of a rocket operating in a vac.um is considered first and then rocket
projectiles operating in the atmosphere are treated. The atmospheric
density at high altitudes was eatimated from an extrapolation of NACA
standard atmosphere. Since the alr reslstance at extreme altitudes 1s
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very small compared with the force of gravity, the altitudes attalned
would be changed a negligible amount by an error in asgumed alr density.

Rocket operating in a vacuum.- The resultant force (thrust minus
ingtantaneous weight) on a rocket accelerating vertically upward In a
vacuum can be equated to the mass times the acceleratlion:

dm dm dm
VJE- mo-ta->g=<mo-ta€>a (29)

If the thrust is some constant K +times the initlal gross mass then,
from equation (1),

dm _ Koo
dt VJ
and hence
KV
= — _
a T oKt g (30)
Since

j‘vinst % b g £
dV=fa.dt=KV’f——-——-gfd.t
o 0 Jdy Vy - Kb 0

-
V=7, 1oge§—3——_ﬁﬂ - gt (31)

The combustlion time tp can be expressed in terms of fuel load mp,
Jet velocity Vj, and K:

_ 4. am _ tpKmg
me =*BFg = vy

or

o
p‘iLﬁ
&1

(32)
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By use of equation (32), equation (31) becomes

. v
Vg =VJ loge']-——l—m—f' - gi‘l;z- . (33)
Tm_
O

where Vp 18 the velocity at the end of burning. Figure 9 shows a plot

of this equation for V, = 8000 and various values of K/g and mp/m e

This graph shows that the rockets with high initial accelerations and
high percentages of fuel reach the highest velocities when fired vertically
in a vacuum. .

In order to determine the altitude attained during burning, equation (31)
must be Integrated:

Binst 5
¥
dh=det=ijloge<VJ—_j§>dt -8 t dt
0 0 0

Integration of this equation ylelds

2 -K 2
t
Bingt =CL§— - Va‘°) Log “"ﬁ* it - (3%)

If the value of combustion time from equation (32) is substituted in
equation (34), the altitude at the end of burning becomes

v,2 2
hB=_K-L <_Ef_>loge _m-i +m-£_-2%m-£ ' (35)

o B/ To - oy :
Figure 10 shows the altitude at the end of burning for the rockets
considered in figure 9. The rockets with a high percentage of fuel load
and a thrust equal to approximately 1.5 times the starting welght reach
the highest altitudes during dburning.

After the burning is completed, the rockets coast with a decel-
eration due to gravity. Since some of the altitudes reached during
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coasting are very high, the variation with altitude of the acceleration
due to gravity must be accounted for. The acceleration of tHe rocket

is

a%n _ To 2 o
w2 -So<m> (36)
where
g = acceleration of gravity at surface of earth
= 32.2 feet per second® '
and
ro = radius of the earth

20,908,800 feet

Equation (36) can be written

and

where hp 1s the final altitude reached (when V = 0). Integration
and simplificatlion of thils equation glves

h, = 2(1‘0 + h:B) 1'0280 r B
e}

£ 2 ) -
2ry 8, = Vg (To * th)

or

_ 2r0230hB + szro@o + hﬁ

(37
21'0280 - V:B2 ro + h@
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The total altitude attalned by rockets fired vertically in a vacuum can .
be determined by use of the values of Vz and hp determined from

equaticns (33) and (35). Figure 11 shows that the maximum posaible
altitudes result from high initlal accelerations combined with large
fuel loads.

Rocket operating in alr.- The most lmportant effect of alr on the
performance of most rockets 1s the deceleration caused by alr resistance.
For a rocket of glven density, the deceleratlion due to alr resistance
decreases as the size of the rocket increases. Since the purpoge of this
part of the lnvestigation is to show how alr resistance shifts the
trends that were shown 1n figure 11 for operation 1n a vacuum, an
estimate of the drag of a possible rocket design muast be made. Figure 12
shows the assumed variatlon of drag coefficient wlth Mach number. In
actual practice the drag would, of course, be a function of Reynolds
number too. An additional term must be added'to equation (30) to account
for the deceleration due to alr reslstance. The acceleration during

burning, therefore, 1s . '
N
- )V

T (38)

~“xt 8

a.-_B =

Equation (38) was used in a graphical integration of the equation

by = j)‘tB L’taB at at q "

where the upper limit tB was determlned by equation (32) . After the
fuel 1s conaumed, the equatlion for acceleration during cocasting becomes

_ D
ac—--m—e--g _ -

where g varles with altitude. The final altitude thus attained 1s

or, where h, 1s determined graphically)

o e t
hf=h3+f det+f dtfacdt
B ' s B

At high altitudes, where the drag becomes negligible, equation (37)
can be adapted for use in the final part of the integratlon.
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Figure 13 shows the maximum altitudes reached by rockets fired
vertically through the atmosphere. A sketch 1s given to 1llustrate the
gize of the rocket. The altitudes reached are less than those reached
in a vacuum (see fig. 11) and indicate that an optimum Initial acceler-
ation which 1s.of the order of twice the acceleration of gravlity exists
for high-altitude rocksets.

Posslbly the most interesting concluslon to be drawn from figure 13
1s that projectiles having a ratio of thrust to initlal welght of 100
and a 60-percent fuel load reach higher altitudes than those proJjectiles
with more fuel. This condition is easily explalned. Because of the
high thrust, these high initial acceleration rockets burn out at low
altltudes and rely on coasting to reach high altitudes. The rockets
with low empty welghts (high design fuel loads) decelerate rapidly because
of alr resistance and hence do not coast as high as the rockets with
heavier empty welghts. If the alr resistance 1s consldered as a functlom
of Reynolds number the Intersectlong will differ.

Escape velocity.- Equation (37) gave the equation for the maximum
altitude reached by a rocket in a vacuum as

2
2 r, + hﬁ)ro 8o
2r°2go - VBQ ro + hﬁ)

-T R
(o]

hf=

or

2 2

_ 2ro go@B + VB ro(?o + héz
2 2

2ry g, - Vg <%o + hé)

This altitude becomes Infinite when
2 2
er,"g, - Vg(ry + hﬁ) =

Then 1f hp 1s negligibly small compared with Ty . ——

Vesoro (39)

36,695 feet per second

)

6.95 miles per- second
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This veloeclty 1is called "escape velocity." If the effect of air
reslstance 1s neglected a projectile having thls speed could completely
egcape the gravitatlional field of the earth.

The percentage of fuel lcad required to reach escape velocity can
be determined for rockets which have hlgh accelerations by use of

equations (4) and (39), thus
) J2goro

W v
ﬁf =1-0e0 J (40)
_ 36695
V
=1 -8 J

Figure 14 shows a graph of the percentage fuel load required to
reach escape veloclty wlth different effectlve Jet veloclties., Curves
are presented for one~-stage, two-stege, and three-stage rockets.

The performance of e multistage rocket can be explained by refer-
ring to equation (4) which shows that the change in speed of a rocket
i1s a function of the ratio of fuel weight to gross welght. A two stage
rocket can be considered to consist of a "mother” rocket and a baby
rocket. The comblined rocket is fired starting from rest. The welght
of the fuel in the mother rocket divided by the gross weight of the
combined rocket can be used in equation (4) to determine the final
veloclty of the combined rocket. When this aspeed 1s reached all the
fuel in the mother rocket has been used but none of that in the baby
rocket has been used. At this time the mother rocket 1s cut loose from
the baby rocket and the engine of the baby rocket ls started. Then the
welght of fuel of the baby rocket dividsed by the gross welght of the
baby rocket determines the increase in speed of the second stage of
the rocket. (See equation (4).) If the ratioc of fuel welght of the
mother rocket to gross welght of the combinastion 1s the same as the
fuel welght of the baby rocket divided by the initial welght of the baby
rocket, the final veloclty of the rocket 1s twice the velocity that.could
be obtained by elther stage alone. This principle 1s of extrems impor-
tance in attaining the exceedingly high speeds that are required by long-
range rockets. Structural factors must be consldered before the optimum
number of stages can be determined for a given mission.

Figure 14 shows that one-stage and two-stage rockets must have
extremely high fuel loads in order to reach escape speeds. The fuel
loads required by the three-stage rocket, however, are much lower. TFor
example, a three-stage rocket having a 10,000-foot-per-second Jet velocity
could reach escape apeed provided the fuel load per stage 1s over Tl per-
cent of the initlal welght per stage.
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Maximum Range

In order to find the range of a rocket launched from the earth in a
vacuum the rocket will be consldered to be a free body with a glven total
energy (that is » to leave the earth with a given velocity and recelve no
further thrust) moving in the gravitational field of the earth. The path
of the rockst i1s first determined from basic considerations and then the
range on the surface of the earth is determined from the intersection of
this path with the surface of the earth. The esquation that describes the
path of such a body has been developed in classical mechanics (reference 1)
and is now known as Kepler's first law. A very brief outline of the
derivation follows: The law of conservation of energy may be written as
(Note - the subscript o denotes the reference level of our system; that
is, the surface of the earth.)

2
v _ M_Y M
T -G =3 - % (h1)

where
G universal constant of gravitation
M mass of earth

and the law of conservation of angular momentum is, in polar coordinates,
2 %% = Constant = C (42)

The follcwiﬁg polar equation i1s obtalined by eliminasting time from
equations (41) and (42), separating varlables, integrating, and
glmplifying:

o2

r =

(43)

GM
r V2 2
1-cosf <__OG§[ -2 CGM+1
%

This equation 1s a special case of Kepler's first law which states that
the orblts of bodles in the solar system are conics with the sun occupying
one focus.

For the energy levels considered here, the conic is an ellipse with
the center of the earth occupylng one focus. If the intersectlions of a
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circle of radius equal to the radius of the earth with ellipses corre-
sponding to varlious projectile energy levels are determined, the variatlon
of range with launching angle and total energy can be defined.

In equation (L43) when r = rg, = radius of the earth, the ellipse
intersects the surface of the earth.

Since
C = roVy cos 8 (Lh)
where 6 , the launching angle for the rocket, is the angle between

slope of ellipse and slope of circle at point of intersection, squation (43)
now becones

r02V02 cos®e

GM
2 2
ToVo )rdvo o
l-cOB¢%-<-—E-M—GM cos“@

where ¢ is the semlangle of the range as measured from the center of
the earth. .

(45)

e =

If

rvV2e

Q = 5> =(0.3201 x 10°E)v 2 (46)

vhere V, 1s measured In milee per hour, then

1-cosf /L -(2-Q) Q cose =Q cos0
or
cos § = L -Qoos®o (47)
\ﬁ - (2 - Q)Q cos2e
Also

sin ¢ = Q s8in 6 cos @ B (48)
V& - (2 - Q)q cos
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and
Q sin 8 cos @
tan @ =
¢ 1 -Q cos29 (9)
If the effect of the rotation of the earth 1s neglected

2nr

R = —pof

where f i1is measured in degrees, or

-1.Q sin 9 cos @
1-4Q c0526

R = 138.24 tan (50)

wvhere R 1s measured in mlles. This expression for R 18 the ildsallzed
range obtained when alr drag and burning time are neglected.

Figure 15 showe the varlation with launching angle of the range of
a rocket launched in vacuum for constent values of launching velocity.

In order to determine the launching angle for maximum range at a
glven launching velocity, equation (50) is differentiated with respect to
9 and the result set equal to zerc so that

= -1
Gopt tan 1 - Q

= tan~1 \[1 - (0.3201 X 10"8)v02 (51)

Figure 15 shows that the optimum launchlng angle for short-range
rockets is 45° , however, this optimum launching angle decreases to 0° as
the launching veloclty is increased to that required for a range of one-
half the circumference of the earth.

When the value of Q from equation (51) is substituted in
equation (50),

Vo2
(6.248 x 10%) - v 2

Ry = 138.24 sin~t (52)

This maximum range 1s plotted in Ffigure 16 as a function of launching
velocity. Thils figure shows that a rocket having a speed of 17,8_00 miles
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per hour can reach any point on the surface of the earth. Since this .
rocket skimg the surface of the earth (effects of the atmoaphere

neglected), 1t can be concluded that any polnt on the surface of the

earth can be reached by this rocket in less than 45 minutes.

The maximum altitude attained by a rocket launched at the optimum
launching angle for the launching velocity consldered may be determined
as follows: In equation (L43) the maximum value of r occurs at ¢ = 0°
(that is, cos § = 1). If we substitute this velue of cos @ in
equation (45) we obtain by use of equation (46)

2
9 cos O (53)

1 - \/1 - Q2 - Q) cos2e

If the value of 6,pt 1s substituted in equation (53) and the radius of
the earth subtracted from r, the following equation results:

A plot of equation (54) 1s presented as Ffigure 17.

Equation (52) determines the range of & rocket as a function of 1ts
launching velocity. Thus, for any range, the required launching speed
can be obtalned and then substituted in equation (4) to determine the
fuel loads needed to reach the required speed. TFigure 18 shows the fuel .
loads required to attain different ranges for several values of the Jet
veloclty and for one-stage, two-stage, and three-stage rockets. For
example, a three-stage rocket having a 10,000-foot-per-second Jet velocity
can reach any point on the surface of the earth provided the fuel load
per stage 1s over 58 percent of the initial weight per stage (fig. 18(c)).

n

The renge charts as presented in this peper consider nonlifting air-
craft operating in a vacuum. This method of operation can be approxi-
mated by boosting the rocket through most of the atmosphere, by firing
it from a high-flying alrplane, or by the use of extremely large, high-
denslty rockets 1n which the ratio of air drag to rocket mass is fairly
low.

The alr resistance in some cases may appreciably slow down the rocket
and hence shorten its range as a projectile. On the other hand, the use
of wings on a rocket that reenters the atmosphere may regain much of the
lost range by enabling the rocket to glide for a considerable distance.

The problem of range in the atmosphere may be demonstreted by the
use of two similar rockets having three stages, a fuel load per stage
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of 60 percent of the initial welght per stage, and an effective Jet
velocity of 8000 feet per second. Figure 18(0) shows that a rocket
having these characterlstics should be capable of having a range of
4700 miles in & vacuum,

The determination of the optimum flight path and range of rockets
operating in alr 1s beyond the scope of thls paper; however, certain
asgumptlions can be made for a rocket similar to the. preceding three-stage
rocket. If the rocket ls assumed to rise vertically through the atmos-~
phere to an altlitude of 100,000 feet and to ume the remaining fuel to
travel as a projectile in a vecuum, the performsnce can be read from the
graphs. Figure 13 shows that a hk2-percent fuel load is required to
reach 100,000 feet. The remaining fuel In the flrat stags is then

We-We _WsR _ 0.60 - 0.2 . 51
W, - Wgg WR  1.00 - 0.L2

If a 31-percent fuel load 1s used for the first stage and a 60-percent
fuel load for the last two stages, flgure 2 gives the final :speed of the
rocket as

2025 + 2(4975)
11,975 mlles per hour

Ve

17,567 feet per second

Figure 16 gives an estimate of the range for travel at an altitude of
more than 100,000 feet as 2400 mlles. When the projectile returns to
an altltude of 100,000 feet the total energy per pound of rocket weight

is '
Ve 175672
E—'é—g-+h—a%r—+100,000

4,892,000 Poot-pounds

If the rocket can glide with an average effective lift-drag ratio of 3,
this energy can be translated into the additionsl range (final energy
neglected)

AR = 52%= 2780 miles

The total range 1n the atmosphere would therefore be

= 2400 + 2780 = 5180 miles
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This example shows the slignificant gains in range which may be cobtained
by use of gliding deviceg on rocket projectiles for operation in alr

end the lmportance of securing gocd gliding characteristlcs for operation
in the air. Some other important problems Ilnvolved in attalning maximum
possible range are the determination of the optimum flight paths, the
investigation of heating caused by the air, a study of the locads imposed
by leveling out from the trajectory, and a sultable design for high 1lift-
drag ratios at high Mach numbers. ’

CONCLUDING REMARKS

The present paper has summarized some of the exlsting literature
on rocket theory and has supplemented this information with additional
interesting facts and relations useful in introducing the problems of
rocket-powered alrcraft performance. Some general and sgpecific facts
relatlive to rocket performance brought out are as follows:

1. The Jet efficlency of a rocket accelerating horizontally in
a vacuum reaches & meximum of 100 percent at a forward speed equal to
the Jet speed and then decreases to zero at twice Jet speed.

2. A rocket haé 1tes maximum kinetic energy when 1t attains a
speed equal to twlce the Jet spesed. —

3. In a vacuum any rocket attaining a velocity of 17,800 miles per
hour could operate in a clrcular orbit around the earth at ground level
thereby belng capable of reaching any point on the earth's surface in
less than 45 minutes. In practice, the performance estimation must
allow for the effects of the atmosphere.

4. IF the effects of air resistance are neglected,any point on the
surface of the .earth can be reached by a three-stege rocket having a
10,000-foot-per-second Jet velocity provided the fuel load per stage
is over 58 percent of the initilal weight per stage.

5. The three-stage rocket would require fuel loads equal to 71 per-
cent of the initial welght per stage 1n order to eascape the gravitational
field of the earth.

6. The optimum launching angle for attaining maximum range with a
glven launching veloclty in a vacuum varies linearly from 45° for zero
range to 0° for a range equal to one-half the circumference of the
earth,
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T. Rocket exhaust nozzles attaln high effectiveness only when low
ratlios of outside pressurse to combustion chamber pressure are maintained.

Langley Memorial Aeronautical Iaboratory

Natlonal Advisory Committee for Aeromautics
Langley Field, Va., September 29, 1947
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Figure 15.- Variation of range with launching angle for rocket
projectiles launched in a vacuum.



Haximum range, miles

12 ’ (o]0 4] f’
10,000 /I

£000 /

6000

kooo /

2000 ; /]

// NEA
" — |
0 Looo 8000 12,000 16,000 20,000

Launohing velosity, mph

Figure 18,- Variation of maximum range with

launching velocity for rocket projectiles
launched at optimum angle in a vacuum.

Mpxizum saltitude during maximum range flight, £t

5!0000000
N
1,000,000 FAR R
3,000,000 v
/ |
2,000,000 /
1,000,000
1
0 L
] hooo 8000 12,000 16,000 20,000
Launching velocity, mph W
Figure 17.- Maximum altitude attained for

rocket projectiles fired at angle for
maximum range in a vacuurm,

"ON N.I. VOVN

1071

e




44

12,000

10,000

- 8000
@
(]
od
(=}
5

6000
H
g
(=
wd
M

£ Looo

2000

0

Figure 18.-

NACA TN No. 1401

‘Effective Jet
velooclty
(rps)
12 x 107
10
g
6
EFE::;ggééiﬂ::::::i::::
0 .20 H0 .60 .80 1.00

Ratio of fuel weight to gross weight, We/W,
(a) One-stage rocket.

Maximum range as a function of the ratio of fuel weight to

gross weight for several effective jet velocities for rocket
projectiles launched in a vacuum.
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Figure 18,- Continued.
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Figure 18.- Concluded.



